

 Navigation

 	
 index

 	
 next |

 	Biomedical Statistics 0.2 documentation

Welcome to a Little Book of R for Biomedical Statistics!

By Avril Coghlan [http://www.sanger.ac.uk/research/projects/parasitegenomics/],
Parasite Genomics Group, Wellcome Trust Sanger Institute, Cambridge, U.K.
Email: alc@sanger.ac.uk

This is a simple introduction to biomedical statistics using the
R statistics software.

There is a pdf version of this booklet available at
https://media.readthedocs.org/pdf/a-little-book-of-r-for-biomedical-statistics/latest/a-little-book-of-r-for-biomedical-statistics.pdf.

If you like this booklet, you may also like to check out my booklet on using
R for time series analysis,
http://a-little-book-of-r-for-time-series.readthedocs.org/ and
my booklet on using R for multivariate analysis,
http://little-book-of-r-for-multivariate-analysis.readthedocs.org/.

Contents:

	How to install R
	Introduction to R

	Installing R
	How to check if R is installed on a Windows PC

	Finding out what is the latest version of R

	Installing R on a Windows PC

	How to install R on non-Windows computers (eg. Macintosh or Linux computers)

	Installing R packages
	How to install an R package

	How to install a Bioconductor R package

	Running R

	A brief introduction to R

	Links and Further Reading

	Acknowledgements

	Contact

	License

	Using R for Biomedical Statistics
	Biomedical statistics

	Calculating Relative Risks for a Cohort Study

	Calculating Odds Ratios for a Cohort or Case-Control Study

	Testing for an Association Between Disease and Exposure, in a Cohort or Case-Control Study

	Calculating the (Mantel-Haenszel) Odds Ratio when there is a Stratifying Variable

	Testing for an Association Between Exposure and Disease in a Matched Case-Control Study

	Dose-response analysis:

	Calculating the Sample Size Required for a Randomised Control Trial

	Calculating the Power of a Randomised Control Trial

	Making a Forest Plot for a Meta-analysis of Several Different Randomised Control Trials:

	Links and Further Reading

	Acknowledgements

	Contact

	License

Acknowledgements

Thank you to Noel O’Boyle for helping in using Sphinx, http://sphinx.pocoo.org, to create
this document, and github, https://github.com/, to store different versions of the document
as I was writing it, and readthedocs, http://readthedocs.org/, to build and distribute
this document.

For very helpful comments and suggestions for improvements, thank you very much to:
Tony Burton, Richard A. Friedman, Duleep Samuel, R.Heberto Ghezzo, David Levine, Lavinia Gordon, Friedrich Leisch,
and Phil Spector.

Contact

I will be grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to
my email address alc@sanger.ac.uk

License

The content in this book is licensed under a Creative Commons Attribution 3.0 License [http://creativecommons.org/licenses/by/3.0/].

 Copyright 2010, Avril Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Biomedical Statistics 0.2 documentation

How to install R

Introduction to R

This little booklet has some information on how to use R for biomedical statistics.

R (www.r-project.org [http://www.r-project.org/]) is a commonly used
free Statistics software. R allows you to carry out statistical
analyses in an interactive mode, as well as allowing simple programming.

Installing R

To use R, you first need to install the R program on your computer.

How to check if R is installed on a Windows PC

Before you install R on your computer, the first thing to do is to check whether
R is already installed on your computer (for example, by a previous user).

These instructions will focus on installing R on a Windows PC. However, I will also
briefly mention how to install R on a Macintosh or Linux computer (see below).

If you are using a Windows PC, there are two ways you can check whether R is
already isntalled on your computer:

	Check if there is an “R” icon on the desktop of the computer that you are using.
If so, double-click on the “R” icon to start R. If you cannot find an “R” icon, try step 2 instead.

	Click on the “Start” menu at the bottom left of your Windows desktop, and then move your
mouse over “All Programs” in the menu that pops up. See if “R” appears in the list
of programs that pops up. If it does, it means that R is already installed on your
computer, and you can start R by selecting “R” (or R X.X.X, where X.X.X gives the version of R,
eg. R 2.10.0) from the list.

If either (1) or (2) above does succeed in starting R, it means that R is already installed
on the computer that you are using. (If neither succeeds, R is not installed yet).
If there is an old version of R installed on the Windows PC that you are using,
it is worth installing the latest version of R, to make sure that you have all the
latest R functions available to you to use.

Finding out what is the latest version of R

To find out what is the latest version of R, you can look at the CRAN (Comprehensive
R Network) website, http://cran.r-project.org/.

Beside “The latest release” (about half way down the page), it will say something like
“R-X.X.X.tar.gz” (eg. “R-2.12.1.tar.gz”). This means that the latest release of R is X.X.X (for
example, 2.12.1).

New releases of R are made very regularly (approximately once a month), as R is actively being
improved all the time. It is worthwhile installing new versions of R regularly, to make sure
that you have a recent version of R (to ensure compatibility with all the latest versions of
the R packages that you have downloaded).

Installing R on a Windows PC

To install R on your Windows computer, follow these steps:

	Go to http://ftp.heanet.ie/mirrors/cran.r-project.org.

	Under “Download and Install R”, click on the “Windows” link.

	Under “Subdirectories”, click on the “base” link.

	On the next page, you should see a link saying something like “Download R 2.10.1 for Windows” (or R X.X.X, where X.X.X gives the version of R, eg. R 2.11.1).
Click on this link.

	You may be asked if you want to save or run a file “R-2.10.1-win32.exe”. Choose “Save” and
save the file on the Desktop. Then double-click on the icon for the file to run it.

	You will be asked what language to install it in - choose English.

	The R Setup Wizard will appear in a window. Click “Next” at the bottom of the R Setup wizard
window.

	The next page says “Information” at the top. Click “Next” again.

	The next page says “Information” at the top. Click “Next” again.

	The next page says “Select Destination Location” at the top.
By default, it will suggest to install R in “C:\Program Files” on your computer.

	Click “Next” at the bottom of the R Setup wizard window.

	The next page says “Select components” at the top. Click “Next” again.

	The next page says “Startup options” at the top. Click “Next” again.

	The next page says “Select start menu folder” at the top. Click “Next” again.

	The next page says “Select additional tasks” at the top. Click “Next” again.

	R should now be installed. This will take about a minute. When R has finished, you will
see “Completing the R for Windows Setup Wizard” appear. Click “Finish”.

	To start R, you can either follow step 18, or 19:

	Check if there is an “R” icon on the desktop of the computer that you are using.
If so, double-click on the “R” icon to start R. If you cannot find an “R” icon, try step 19 instead.

	Click on the “Start” button at the bottom left of your computer screen, and then
choose “All programs”, and start R by selecting “R” (or R X.X.X, where
X.X.X gives the version of R, eg. R 2.10.0) from the menu of programs.

	The R console (a rectangle) should pop up:

[image: image3]

How to install R on non-Windows computers (eg. Macintosh or Linux computers)

The instructions above are for installing R on a Windows PC. If you want to install R
on a computer that has a non-Windows operating system (for example, a Macintosh or computer running Linux,
you should download the appropriate R installer for that operating system at
http://ftp.heanet.ie/mirrors/cran.r-project.org [http://ftp.heanet.ie/mirrors/cran.r-project.org/] and
follow the R installation instructions for the appropriate operating system at
http://ftp.heanet.ie/mirrors/cran.r-project.org/doc/FAQ/R-FAQ.html#How-can-R-be-installed_003f).

Installing R packages

R comes with some standard packages that are installed when you install R. However, in this
booklet I will also tell you how to use some additional R packages that are useful, for example,
the “rmeta” package. These additional packages do not come with the standard installation of R,
so you need to install them yourself.

How to install an R package

Once you have installed R on a Windows computer (following the steps above), you can install
an additional package by following the steps below:

	To start R, follow either step 2 or 3:

	Check if there is an “R” icon on the desktop of the computer that you are using.
If so, double-click on the “R” icon to start R. If you cannot find an “R” icon, try step 3 instead.

	Click on the “Start” button at the bottom left of your computer screen, and then
choose “All programs”, and start R by selecting “R” (or R X.X.X, where
X.X.X gives the version of R, eg. R 2.10.0) from the menu of programs.

	The R console (a rectangle) should pop up.

	Once you have started R, you can now install an R package (eg. the “rmeta” package) by
choosing “Install package(s)” from the “Packages” menu at the top of the R console.
This will ask you what website you want to download the package from, you should choose
“Ireland” (or another country, if you prefer). It will also bring up a list of available
packages that you can install, and you should choose the package that you want to install
from that list (eg. “rmeta”).

	This will install the “rmeta” package.

	The “rmeta” package is now installed. Whenever you want to use the “rmeta” package after this,
after starting R, you first have to load the package by typing into the R console:

> library("rmeta")

Note that there are some additional R packages for bioinformatics that are part of a special
set of R packages called Bioconductor (www.bioconductor.org [http://www.bioconductor.org/])
such as the “yeastExpData” R package, the “Biostrings” R package, etc.).
These Bioconductor packages need to be installed using a different, Bioconductor-specific procedure
(see How to install a Bioconductor R package below).

How to install a Bioconductor R package

The procedure above can be used to install the majority of R packages. However, the
Bioconductor set of bioinformatics R packages need to be installed by a special procedure.
Bioconductor (www.bioconductor.org [http://www.bioconductor.org/])
is a group of R packages that have been developed for bioinformatics. This includes
R packages such as “yeastExpData”, “Biostrings”, etc.

To install the Bioconductor packages, follow these steps:

	To start R, follow either step 2 or 3:

	Check if there is an “R” icon on the desktop of the computer that you are using.
If so, double-click on the “R” icon to start R. If you cannot find an “R” icon, try step 3 instead.

	Click on the “Start” button at the bottom left of your computer screen, and then choose “All programs”, and start R by selecting “R” (or R X.X.X, where X.X.X gives the version of R, eg. R 2.10.0) from the menu of programs.

	The R console (a rectangle) should pop up.

	Once you have started R, now type in the R console:

> source("http://bioconductor.org/biocLite.R")
> biocLite()

	This will install a core set of Bioconductor packages (“affy”, “affydata”, “affyPLM”,
“annaffy”, “annotate”, “Biobase”, “Biostrings”, “DynDoc”, “gcrma”, “genefilter”,
“geneplotter”, “hgu95av2.db”, “limma”, “marray”, “matchprobes”, “multtest”, “ROC”,
“vsn”, “xtable”, “affyQCReport”).
This takes a few minutes (eg. 10 minutes).

	At a later date, you may wish to install some extra Bioconductor packages that do not belong
to the core set of Bioconductor packages. For example, to install the Bioconductor package called
“yeastExpData”, start R and type in the R console:

> source("http://bioconductor.org/biocLite.R")
> biocLite("yeastExpData")

	Whenever you want to use a package after installing it, you need to load it into R by typing:

> library("yeastExpData")

Running R

To use R, you first need to start the R program on your computer.
You should have already installed R on your computer (see above).

To start R, you can either follow step 1 or 2:
1. Check if there is an “R” icon on the desktop of the computer that you are using.

If so, double-click on the “R” icon to start R. If you cannot find an “R” icon, try step 2 instead.

	Click on the “Start” button at the bottom left of your computer screen, and then choose “All programs”, and start R by selecting “R” (or R X.X.X, where X.X.X gives the version of R, eg. R 2.10.0) from the menu of programs.

This should bring up a new window, which is the R console.

A brief introduction to R

You will type R commands into the R console in order to carry out
analyses in R. In the R console you will see:

>

This is the R prompt. We type the commands needed for a particular
task after this prompt. The command is carried out after you hit
the Return key.

Once you have started R, you can start typing in commands, and the
results will be calculated immediately, for example:

> 2*3
[1] 6
> 10-3
[1] 7

All variables (scalars, vectors, matrices, etc.) created by R are
called objects. In R, we assign values to variables using an
arrow. For example, we can assign the value 2*3 to the variable
x using the command:

> x <- 2*3

To view the contents of any R object, just type its name, and the
contents of that R object will be displayed:

> x
[1] 6

There are several possible different types of objects in R,
including scalars, vectors, matrices, arrays, data frames, tables,
and lists. The scalar variable x above is one example of an R
object. While a scalar variable such as x has just one element, a
vector consists of several elements. The elements in a vector are
all of the same type (eg. numeric or characters), while lists may
include elements such as characters as well as numeric quantities.

To create a vector, we can use the c() (combine) function. For
example, to create a vector called myvector that has elements
with values 8, 6, 9, 10, and 5, we type:

> myvector <- c(8, 6, 9, 10, 5)

To see the contents of the variable myvector, we can just type
its name:

> myvector
[1] 8 6 9 10 5

The [1] is the index of the first element in the vector. We can
extract any element of the vector by typing the vector name with
the index of that element given in square brackets. For example, to
get the value of the 4th element in the vector myvector, we
type:

> myvector[4]
[1] 10

In contrast to a vector, a list can contain elements of different
types, for example, both numeric and character elements. A list can
also include other variables such as a vector. The list() function
is used to create a list. For example, we could create a list
mylist by typing:

> mylist <- list(name="Fred", wife="Mary", myvector)

We can then print out the contents of the list mylist by typing
its name:

> mylist
$name
[1] "Fred"

$wife
[1] "Mary"

[[3]]
[1] 8 6 9 10 5

The elements in a list are numbered, and can be referred to using
indices. We can extract an element of a list by typing the list
name with the index of the element given in double square brackets
(in contrast to a vector, where we only use single square
brackets). Thus, we can extract the second and third elements from
mylist by typing:

> mylist[[2]]
[1] "Mary"
> mylist[[3]]
[1] 8 6 9 10 5

Elements of lists may also be named, and in this case the elements
may be referred to by giving the list name, followed by “$”,
followed by the element name. For example, mylist$name is the
same as mylist[[1]] and mylist$wife is the same as
mylist[[2]]:

> mylist$wife
[1] "Mary"

We can find out the names of the named elements in a list by using
the attributes() function, for example:

> attributes(mylist)
$names
[1] "name" "wife" ""

When you use the attributes() function to find the named elements
of a list variable, the named elements are always listed under a
heading “$names”. Therefore, we see that the named elements of the
list variable mylist are called “name” and “wife”, and we can
retrieve their values by typing mylist$name and mylist$wife,
respectively.

Another type of object that you will encounter in R is a table
variable. For example, if we made a vector variable mynames
containing the names of children in a class, we can use the table()
function to produce a table variable that contains the number of
children with each possible name:

> mynames <- c("Mary", "John", "Ann", "Sinead", "Joe", "Mary", "Jim", "John", "Simon")
> table(mynames)
mynames
 Ann Jim Joe John Mary Simon Sinead
 1 1 1 2 2 1 1

We can store the table variable produced by the function table(),
and call the stored table “mytable”, by typing:

> mytable <- table(mynames)

To access elements in a table variable, you need to use double
square brackets, just like accessing elements in a list. For
example, to access the fourth element in the table mytable (the
number of children called “John”), we type:

> mytable[[4]]
[1] 2

Alternatively, you can use the name of the fourth element in
the table (“John”) to find the value of that table element:

> mytable[["John"]]
[1] 2

Functions in R usually require arguments, which are input
variables (ie. objects) that are passed to them, which they then
carry out some operation on. For example, the log10() function is
passed a number, and it then calculates the log to the base 10 of
that number:

> log10(100)
2

In R, you can get help about a particular function by using the
help() function. For example, if you want help about the log10()
function, you can type:

> help("log10")

When you use the help() function, a box or webpage will pop up with
information about the function that you asked for help with.

If you are not sure of the name of a function, but think you know
part of its name, you can search for the function name using the
help.search() and RSiteSearch() functions. The help.search() function
searches to see if you already have a function installed (from one of
the R packages that you have installed) that may be related to some
topic you’re interested in. The RSiteSearch() function searches all
R functions (including those in packages that you haven’t yet installed)
for functions related to the topic you are interested in.

For example, if you want to know if there
is a function to calculate the standard deviation of a set of
numbers, you can search for the names of all installed functions containing
the word “deviation” in their description by typing:

> help.search("deviation")
Help files with alias or concept or title matching
'deviation' using fuzzy matching:

genefilter::rowSds
 Row variance and standard deviation of
 a numeric array
nlme::pooledSD Extract Pooled Standard Deviation
stats::mad Median Absolute Deviation
stats::sd Standard Deviation
vsn::meanSdPlot Plot row standard deviations versus row

Among the functions that were found, is the function sd() in the
“stats” package (an R package that comes with the standard R
installation), which is used for calculating the standard deviation.

In the example above, the help.search() function found a relevant
function (sd() here). However, if you did not find what you were looking
for with help.search(), you could then use the RSiteSearch() function to
see if a search of all functions described on the R website may find
something relevant to the topic that you’re interested in:

> RSiteSearch("deviation")

The results of the RSiteSearch() function will be hits to descriptions
of R functions, as well as to R mailing list discussions of those
functions.

We can perform computations with R using objects such as scalars
and vectors. For example, to calculate the average of the values in
the vector myvector (ie. the average of 8, 6, 9, 10 and 5), we
can use the mean() function:

> mean(myvector)
[1] 7.6

We have been using built-in R functions such as mean(),
length(), print(), plot(), etc. We can also create our own
functions in R to do calculations that you want to carry out very
often on different input data sets. For example, we can create a
function to calculate the value of 20 plus square of some input
number:

> myfunction <- function(x) { return(20 + (x*x)) }

This function will calculate the square of a number (x), and then
add 20 to that value. The return() statement returns the calculated
value. Once you have typed in this function, the function is then
available for use. For example, we can use the function for
different input numbers (eg. 10, 25):

> myfunction(10)
[1] 120
> myfunction(25)
[1] 645

To quit R, type:

> q()

Links and Further Reading

Some links are included here for further reading.

For a more in-depth introduction to R, a good online tutorial is
available on the “Kickstarting R” website,
cran.r-project.org/doc/contrib/Lemon-kickstart [http://cran.r-project.org/doc/contrib/Lemon-kickstart/].

There is another nice (slightly more in-depth) tutorial to R
available on the “Introduction to R” website,
cran.r-project.org/doc/manuals/R-intro.html [http://cran.r-project.org/doc/manuals/R-intro.html].

Acknowledgements

For very helpful comments and suggestions for improvements on the installation instructions, thank you very much to Friedrich Leisch and Phil Spector.

Contact

I will be very grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to
my email address alc@sanger.ac.uk

License

The content in this book is licensed under a Creative Commons Attribution 3.0 License [http://creativecommons.org/licenses/by/3.0/].

 Copyright 2010, Avril Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Biomedical Statistics 0.2 documentation

Using R for Biomedical Statistics

Biomedical statistics

This booklet tells you how to use the R software to carry out some simple analyses
that are common in biomedical statistics. In particular, the focus is on cohort
and case-control studies that aim to test whether particular factors are
associated with disease, randomised trials, and meta-analysis.

This booklet assumes that the reader has some basic knowledge of biomedical statistics, and
the principal focus of the booklet is not to explain biomedical statistics analyses, but rather
to explain how to carry out these analyses using R.

If you are new to biomedical statistics, and want to learn more about any of the concepts
presented here, I would highly recommend the Open University book
“Medical Statistics” (product code M249/01), available from
from the Open University Shop [http://www.ouw.co.uk/store/].

There is a pdf version of this booklet available at
https://media.readthedocs.org/pdf/a-little-book-of-r-for-biomedical-statistics/latest/a-little-book-of-r-for-biomedical-statistics.pdf.

If you like this booklet, you may also like to check out my booklet on using
R for time series analysis,
http://a-little-book-of-r-for-time-series.readthedocs.org/ and
my booklet on using R for multivariate analysis,
http://little-book-of-r-for-multivariate-analysis.readthedocs.org/.

Calculating Relative Risks for a Cohort Study

One very common type of data set in biomedical statistics is a cohort study, where you have
information on people who were exposed to some treatment or environment (for example, people
who took a certain drug, or people who smoke) and also on whether the same people have a
particular disease or not. Your data set would look something like this:

	
	Disease
	Control

	Exposed
	156
	9421

	Unexposed
	1531
	14797

You can enter the data in R by typing:

> mymatrix <- matrix(c(156,9421,1531,14797),nrow=2,byrow=TRUE)
> colnames(mymatrix) <- c("Disease","Control")
> rownames(mymatrix) <- c("Exposed","Unexposed")
> print(mymatrix)
 Disease Control
Exposed 156 9421
Unexposed 1531 14797

The relative risk of having the disease given exposure is the probability of having the
disease for people who were exposed to the treatment or environmental factor, divided
by the probability of having the disease for people who were not exposed to that treatment
or environmental factor.

You can calculate the relative risk of having the disease given exposure in R, by using a
function calcRelativeRisk(). To be able to use this function, just copy the following code and paste
it into R:

> calcRelativeRisk <- function(mymatrix,alpha=0.05,referencerow=2)
 {
 numrow <- nrow(mymatrix)
 myrownames <- rownames(mymatrix)
 for (i in 1:numrow)
 {
 rowname <- myrownames[i]
 DiseaseUnexposed <- mymatrix[referencerow,1]
 ControlUnexposed <- mymatrix[referencerow,2]
 if (i != referencerow)
 {
 DiseaseExposed <- mymatrix[i,1]
 ControlExposed <- mymatrix[i,2]
 totExposed <- DiseaseExposed + ControlExposed
 totUnexposed <- DiseaseUnexposed + ControlUnexposed
 probDiseaseGivenExposed <- DiseaseExposed/totExposed
 probDiseaseGivenUnexposed <- DiseaseUnexposed/totUnexposed

 # calculate the relative risk
 relativeRisk <- probDiseaseGivenExposed/probDiseaseGivenUnexposed
 print(paste("category =", rowname, ", relative risk = ",relativeRisk))

 # calculate a confidence interval
 confidenceLevel <- (1 - alpha)*100
 sigma <- sqrt((1/DiseaseExposed) - (1/totExposed) +
 (1/DiseaseUnexposed) - (1/totUnexposed))
 # sigma is the standard error of estimate of log of relative risk
 z <- qnorm(1-(alpha/2))
 lowervalue <- relativeRisk * exp(-z * sigma)
 uppervalue <- relativeRisk * exp(z * sigma)
 print(paste("category =", rowname, ", ", confidenceLevel,
 "% confidence interval = [",lowervalue,",",uppervalue,"]"))
 }
 }
 }

You can now use the function calcRelativeRisk() to calculate the relative risk of having the
disease given exposure, and a confidence interval for that relative risk. For example, to
calculate a 99% confidence interval, type:

 > calcRelativeRisk(mymatrix,alpha=0.01)
[1] "category = Exposed , relative risk = 0.173721236521721"
[1] "category = Exposed , 99 % confidence interval = [0.140263410926649 ,
 0.215159946697844]"

This tells you that the estimate of the relative risk is about 0.174, and that a 99% confidence interval is [0.140, 0.215].
A relative risk of 0.174 means that the risk of disease in people who are exposed (to the treatment or environmental
factor etc. that we are examining) is 0.174 times the risk of disease of people who are not exposed.

If the relative risk is 1 (ie. if the confidence interval includes 1), it means there is no evidence for an association between exposure and disease.
Otherwise, if the relative risk > 1, there is evidence of a positive association between exposure and disease; while
if the relative risk < 1, there is evidence of a negative association. The relative risk can be estimated for a
cohort study but not for a case-control study.

Note that we can also use the calcRelativeRisk() function in the case where we have more than
one exposure category (eg. smoking cigarettes versus smoking cigars, compared to non-smoking).
For this purpose it is used similarly to the calcOddsRatio() function (see below).

Calculating Odds Ratios for a Cohort or Case-Control Study

As well as the relative risk of disease given exposure (to some treatment or environmental factor eg. smoking or some drug), you can also calculate the odds ratio for association between the exposure and the disease
in a cohort study. The odds ratio is also commonly calculated in a case-control
study.

The odds ratio for association between the exposure and the disease is the ratio of:
(i) the probability of having the disease for people who were exposed to the treatment or
environmental factor, divided by the probability of not having the disease for people who were exposed,
and (ii) the probability of having the disease for people who were not exposed to the treatment or
environmental factor, divided by the probability of not having the disease for people who were not exposed.

Again, for either a cohort study or case-control study, your data will look something like this:

Your data set would look something like this:

	
	Disease
	Control

	Exposed
	156
	9421

	Unexposed
	1531
	14797

You can enter the data in R by typing:

> mymatrix <- matrix(c(156,9421,1531,14797),nrow=2,byrow=TRUE)
> colnames(mymatrix) <- c("Disease","Control")
> rownames(mymatrix) <- c("Exposed","Unexposed")
> print(mymatrix)
 Disease Control
Exposed 156 9421
Unexposed 1531 14797

You can use the following R function, calcOddsRatio() to calculate the odds ratio for association between
the exposure and the disease. You will need to copy and paste the function into R before you can use it:

> calcOddsRatio <- function(mymatrix,alpha=0.05,referencerow=2,quiet=FALSE)
{
 numrow <- nrow(mymatrix)
 myrownames <- rownames(mymatrix)

 for (i in 1:numrow)
 {
 rowname <- myrownames[i]
 DiseaseUnexposed <- mymatrix[referencerow,1]
 ControlUnexposed <- mymatrix[referencerow,2]
 if (i != referencerow)
 {
 DiseaseExposed <- mymatrix[i,1]
 ControlExposed <- mymatrix[i,2]

 totExposed <- DiseaseExposed + ControlExposed
 totUnexposed <- DiseaseUnexposed + ControlUnexposed

 probDiseaseGivenExposed <- DiseaseExposed/totExposed
 probDiseaseGivenUnexposed <- DiseaseUnexposed/totUnexposed
 probControlGivenExposed <- ControlExposed/totExposed
 probControlGivenUnexposed <- ControlUnexposed/totUnexposed

 # calculate the odds ratio
 oddsRatio <- (probDiseaseGivenExposed*probControlGivenUnexposed)/
 (probControlGivenExposed*probDiseaseGivenUnexposed)
 if (quiet == FALSE)
 {
 print(paste("category =", rowname, ", odds ratio = ",oddsRatio))
 }

 # calculate a confidence interval
 confidenceLevel <- (1 - alpha)*100
 sigma <- sqrt((1/DiseaseExposed)+(1/ControlExposed)+
 (1/DiseaseUnexposed)+(1/ControlUnexposed))
 # sigma is the standard error of our estimate of the log of the odds ratio
 z <- qnorm(1-(alpha/2))
 lowervalue <- oddsRatio * exp(-z * sigma)
 uppervalue <- oddsRatio * exp(z * sigma)
 if (quiet == FALSE)
 {
 print(paste("category =", rowname, ", ", confidenceLevel,
 "% confidence interval = [",lowervalue,",",uppervalue,"]"))
 }
 }
 }
 if (quiet == TRUE && numrow == 2) # If there are just two treatments (exposed/nonexposed)
 {
 return(oddsRatio)
 }
}

You can then use the function to calculate the odds ratio for association between the exposure
and the disease, and a confidence interval for the odds ratio.
For example, to calculate the odds ratio and a 95% confidence interval for the odds ratio:

> calcOddsRatio(mymatrix,alpha=0.05)
[1] "category = Exposed , odds ratio = 0.160039091621751"
[1] "category = Exposed , 95 % confidence interval = [0.135460641900536 ,
 0.189077140693912]"

This tells us that our estimate of the odds ratio is about 0.160, and a 95% confidence interval
for the odds ratio is [0.135, 0.189].

If the odds ratio is 1 (ie. if the confidence interval includes 1), it means there is no evidence for an association between exposure and disease.
Otherwise, if the odds ratio > 1, there is evidence of a positive association between exposure and disease; while
if the odds ratio < 1, there is evidence of a negative association. The odds ratio can be estimated for either a cohort
study or a case-control study.

We may also have several different exposures (for example, smoking cigarettes versus smoking cigars, compared to
no smoking). In that case, our data will look like this:

	
	Disease
	Control

	Exposure1
	30
	24

	Exposure2
	76
	241

	Unexposed
	82
	509

You can enter the data in R by typing (notice that you need to type “nrow=3” now to have 3 rows):

> mymatrix <- matrix(c(30,24,76,241,82,509),nrow=3,byrow=TRUE)
> colnames(mymatrix) <- c("Disease","Control")
> rownames(mymatrix) <- c("Exposure1","Exposure2","Unexposed")
> print(mymatrix)
 Disease Control
 Exposure1 30 24
 Exposure2 76 241
 Unexposed 82 509

We can again use the function calcOddsRatio() to calculate the odds ratio for each exposure category
relative to lack of exposure. We need to tell the calcOddsRatio() which row in our data matrix contains
the data for lack of exposure (row 3 here), by using the “referencerow=” argument:

> calcOddsRatio(mymatrix, referencerow=3)
[1] "category = Exposure1 , odds ratio = 7.75914634146342"
[1] "category = Exposure1 , 95 % confidence interval = [4.32163714854064 ,
 13.9309131884372]"
[1] "category = Exposure2 , odds ratio = 1.95749418075094"
[1] "category = Exposure2 , 95 % confidence interval = [1.38263094540732 ,
 2.77137111707344]"

If your data comes from a cohort study (but not from a case-control study), you can also calculate
the relative risk for each exposure category:

> calcRelativeRisk(mymatrix, referencerow=3)
[1] "category = Exposure1 , relative risk = 4.00406504065041"
[1] "category = Exposure1 , 95 % confidence interval = [2.93130744422409 ,
 5.46941498113737]"
[1] "category = Exposure2 , relative risk = 1.72793721628068"
[1] "category = Exposure2 , 95 % confidence interval = [1.30507489771431 ,
 2.2878127750653]"

Testing for an Association Between Disease and Exposure, in a Cohort or Case-Control Study

In a case-control or cohort study, it is interesting to do a statistical test for association
between having the disease and being exposed to some treatment or environment (for example,
smoking or taking a certain drug).

In R, you can test for an association using the Chi-squared test, or Fisher’s exact test.
For example, using our data from the example above:

> print(mymatrix)
 Disease Control
Exposure1 30 24
Exposure2 76 241
Unexposed 82 509
> chisq.test(mymatrix)
 Pearson's Chi-squared test

 data: mymatrix
 X-squared = 60.5762, df = 2, p-value = 7.015e-14

> fisher.test(mymatrix)
 Fisher's Exact Test for Count Data

 data: mymatrix
 p-value = 5.263e-12
 alternative hypothesis: two.sided

Here the P-value for the Chi-squared test is about 7e-14, and the P-value for Fisher’s exact
test is about 5e-12. Both are very tiny (<0.05), indicating a significant association between
exposure and disease (using a cutoff of P<0.05 for statistical significance).

Calculating the (Mantel-Haenszel) Odds Ratio when there is a Stratifying Variable

You may have data from a cohort study or case-control study that is stratified, for example,
the data may be separated (stratified) by the sex of the people studied. For example, we may
have two different tables giving information on the relationship between exposure (eg. to
a certain drug or smoking cigarettes) and having a particular disease. One of the tables
may given information for women, and the other give information for men.

Data for women:

	
	Disease
	Control

	Exposure
	4
	5

	Unexposed
	5
	103

Data for men:

	
	Disease
	Control

	Exposure
	10
	3

	Unexposed
	5
	43

We can enter our data into R as follows:

> mymatrix1 <- matrix(c(4,5,5,103),nrow=2,byrow=TRUE)
> colnames(mymatrix1) <- c("Disease","Control")
> rownames(mymatrix1) <- c("Exposure","Unexposed")
> print(mymatrix1)
 Disease Control
Exposure 4 5
Unexposed 5 103

> mymatrix2 <- matrix(c(10,3,5,43),nrow=2,byrow=TRUE)
> colnames(mymatrix2) <- c("Disease","Control")
> rownames(mymatrix2) <- c("Exposure","Unexposed")
> print(mymatrix2)
 Disease Control
Exposure 10 3
Unexposed 5 43

The Mantel-Haenszel odds ratio estimates the odds ratio for association between the exposure and disease, controlling
for the possible confounding effects of the stratifying variable (gender here). There is an R package
called “lawstat” that contains a function “cmh.test()” for calculating the Mantel-Haenszel odds ratio.
To use this function, we first need to install the “lawstat” R package (for instructions on how to
install an R package, see How to install an R package).
Once you have installed the “lawstat” R package, you can load the “lawstat” R package by typing:

> library("lawstat")

You can then use the “cmh.test()” function to calculate the Mantel-Haenszel odds ratio:

> myarray <- array(c(mymatrix1,mymatrix2),dim=c(2,2,2))
> cmh.test(myarray)
 Cochran-Mantel-Haenszel Chi-square Test

 data: myarray
 CMH statistic = 40.512, df = 1.000, p-value = 0.000,
 MH Estimate = 23.001,
 Pooled Odd Ratio = 25.550,
 Odd Ratio of level 1 = 16.480,
 Odd Ratio of level 2 = 28.667

This tells you that the odds ratio for the first stratum (women) is 16.480, the
odds ratio for the second stratum (men) is 28.667, and the aggregate odds ratio that
we would get if we pooled the data for men and women is 25.550.
The Mantel-Haenszel odds ratio is estimated to be 23.001.

The cmh.test() function also gives you the output of the Cochran-Mantel-Haenszel Chi-squared,
which is a test for association between the disease and exposure, which controls for the
stratifying variable (gender here). In this case, the p-value for the test is given as 0.000,
indicating a significant association between disease and exposure.

Note that if the we see very different odds ratios for the two strata, it suggests that the variable
used to separate the data into strata (gender here) is a confounder, and we should probably not use
the Mantel-Haenszel odds ratio. To test whether the odds ratios in the different
strata are different, we can use a test called Tarone’s test. To calculate Tarone’s test,
we can use functions from the “metafor” package.
To use this function, we first need to install the “metafor” R package (for instructions on how to
install an R package, see How to install an R package).
Once you have installed the “metafor” R package, you can load the “metafor” R package by typing:

> library("metafor")

We can then use the function calcTaronesTest() below to perform Tarone’s test. You will need
to copy and paste this function into R to use it:

 > calcTaronesTest <- function(mylist,referencerow=2)
 {
 require("metafor")
 numstrata <- length(mylist)
 # make an array "ntrt" of the number of people in the exposed group, in each stratum
 # make an array "nctrl" of the number of people in the unexposed group, in each stratum
 # make an array "ptrt" of the number of people in the exposed group that have the disease,
 # in each stratum
 # make an array "pctrl" of the number of people in the unexposed group that have the disease,
 # in each stratum
 # make an array "htrt" of the number of people in the exposed group that don't have the
 # disease, in each stratum
 # make an array "hctrl" of the number of people in the unexposed group that don't have the
 # disease, in each stratum
 ntrt <- vector()
 nctrl <- vector()
 ptrt <- vector()
 pctrl <- vector()
 htrt <- vector()
 hctrl <- vector()
 if (referencerow == 1) { nonreferencerow <- 2 }
 else { nonreferencerow <- 1 }
 for (i in 1:numstrata)
 {
 mymatrix <- mylist[[i]]
 DiseaseUnexposed <- mymatrix[referencerow,1]
 ControlUnexposed <- mymatrix[referencerow,2]
 totUnexposed <- DiseaseUnexposed + ControlUnexposed
 nctrl[i] <- totUnexposed
 pctrl[i] <- DiseaseUnexposed
 hctrl[i] <- ControlUnexposed
 DiseaseExposed <- mymatrix[nonreferencerow,1]
 ControlExposed <- mymatrix[nonreferencerow,2]
 totExposed <- DiseaseExposed + ControlExposed
 ntrt[i] <- totExposed
 ptrt[i] <- DiseaseExposed
 htrt[i] <- ControlExposed
 }
 # calculate Tarone's test of homogeneity, using the rma.mh function from the
 # "metafor" package
 tarone <- rma.mh(ptrt, htrt, pctrl, hctrl, ntrt, nctrl)
 pvalue <- tarone$TAp
 print(paste("Pvalue for Tarone's test =", pvalue))
}

We can then use the “calcTaronesTest()” function to perform Tarone’s test:

> mylist <- list(mymatrix1,mymatrix2)
> calcTaronesTest(mylist)
[1] "Pvalue for Tarone's test = 0.627420741721689"

Here the p-value for Tarone’s test is greater than 0.05, indicating that there is no
evidence for a significant difference in the odds ratio between the different strata
(between males and females, in this example), when a p-value threshold of <0.05 is
used for statistical significance.

Testing for an Association Between Exposure and Disease in a Matched Case-Control Study

In a 1-1 matched case-control study, there is a control individual who is matched to
each person who has the disease. The matched control individual has the same age, race, sex, etc.
as the person who has the disease. Then we look to see whether the control individuals and
individuals with the disease were exposed to some factor (eg. if they smoked, or took a certain
drug). The data would look something like this:

	
	Control, Exposed
	Control, Unexposed

	Disease, Exposed
	10
	57

	Disease, Unexposed
	13
	95

We can enter our data into R as follows:

> mymatrix <- matrix(c(10,57,13,95),nrow=2,byrow=TRUE)
> colnames(mymatrix) <- c("Control-Exposed","Control-Unexposed")
> rownames(mymatrix) <- c("Disease-Exposed","Disease-Unexposed")
> print(mymatrix)
 Control-Exposed Control-Unexposed
 Disease-Exposed 10 57
 Disease-Unexposed 13 95

We can then use the function calcMHRatio() below to calculate the Mantel-Haenszel odds
ratio for association between the exposure and the disease. You will first need to copy and paste
this function into R:

> calcMHRatio <- function(mymatrix, alpha=0.05)
{
 caseExposedControlUnexposed <- mymatrix[1,2]
 caseUnexposedControlExposed <- mymatrix[2,1]
 MHRatio <- caseExposedControlUnexposed/caseUnexposedControlExposed
 print(paste("Mantel-Haenszel ratio =", MHRatio))

 # calculate a confidence interval
 confidenceLevel <- (1 - alpha)*100
 sigma <- sqrt((1/caseExposedControlUnexposed)+(1/caseUnexposedControlExposed))
 # sigma is the standard error of our estimate of the log of the odds ratio
 z <- qnorm(1-(alpha/2))
 lowervalue <- MHRatio * exp(-z * sigma)
 uppervalue <- MHRatio * exp(z * sigma)
 print(paste(confidenceLevel,"% confidence interval = [",lowervalue,",",uppervalue,"]"))
}

We can then use the function calcMHRatio() to calculate the Mantel-Haenszel odds ratio
for our data set:

> calcMHRatio(mymatrix)
[1] "Mantel-Haenszel ratio = 4.38461538461539"
[1] "95 % confidence interval = [2.40054954520192 , 8.00852126107185]"

This tells us that our estimate of the Mantel-Haenszel odds ratio is about 4.38, and a 95% confidence
interval for the odds ratio is [2.40, 8.01].

For a 1-1 matched case-control study, we can use a test called McNemar’s test to test for a significant
association between the exposure and the disease. We can use the function “mcnemar.test()” to carry out
McNemar’s test in R:

> mcnemar.test(mymatrix)
 McNemar's Chi-squared test with continuity correction

data: mymatrix
McNemar's chi-squared = 26.4143, df = 1, p-value = 2.755e-07

The p-value for McNemar’s test is less than 0.05, indicating that there is a significant
association between the exposure and the disease (using a p-value threshold of <0.05 for
statistical significance).

Dose-response analysis:

In a dose-response analysis, it is usual to have information on the incidence of a disease in
people who were exposed to different doses of some factor (for example, number of cigarettes
smoked per day, dose of a certain drug taken, etc.).
For example, your data may look like this:

	
	Disease
	Control

	Dose=2
	35
	82

	Dose=9.5
	250
	293

	Dose=19.5
	196
	190

	Dose=37
	136
	71

	Dose=50
	32
	13

We can enter our data into R as follows (note that you need to type “nrow=5” to tell R that there are 5 rows of data):

> mymatrix <- matrix(c(35,82,250,293,196,190,136,71,32,13),nrow=5,byrow=TRUE)
> colnames(mymatrix) <- c("Disease","Control")
> rownames(mymatrix) <- c("2","9.5","19.5","37","50")
> print(mymatrix)
 Disease Control
 2 35 82
 9.5 250 293
 19.5 196 190
 37 136 71
 50 32 13

In this case, it is usual to calculate the odds ratio for association between each particular dose
dose (level of exposure) and the disease, relative to the lowest dose. We can calculate these odds
ratios using the following function “doseSpecificOddsRatios()”, which you will need to copy and paste
into R:

> doseSpecificOddsRatios <- function(mymatrix,referencerow=1)
{
 numstrata <- nrow(mymatrix)
 # calculate the stratum-specific odds ratios, and odds of disease:
 doses <- as.numeric(rownames(mymatrix))
 for (i in 1:numstrata)
 {
 dose <- doses[i]
 # calculate the odds ratio:
 DiseaseExposed <- mymatrix[i,1]
 DiseaseUnexposed <- mymatrix[i,2]
 ControlExposed <- mymatrix[referencerow,1]
 ControlUnexposed <- mymatrix[referencerow,2]
 totExposed <- DiseaseExposed + ControlExposed
 totUnexposed <- DiseaseUnexposed + ControlUnexposed
 probDiseaseGivenExposed <- DiseaseExposed/totExposed
 probDiseaseGivenUnexposed <- DiseaseUnexposed/totUnexposed
 probControlGivenExposed <- ControlExposed/totExposed
 probControlGivenUnexposed <- ControlUnexposed/totUnexposed
 oddsRatio <- (probDiseaseGivenExposed*probControlGivenUnexposed)/
 (probControlGivenExposed*probDiseaseGivenUnexposed)
 print(paste("dose =", dose, ", odds ratio = ",oddsRatio))
 }
}

We can then use this function to calculate the dose-specific odds ratios for our data:

> doseSpecificOddsRatios(mymatrix)
[1] "dose = 2 , odds ratio = 1"
[1] "dose = 9.5 , odds ratio = 1.99902486591906"
[1] "dose = 19.5 , odds ratio = 2.41684210526316"
[1] "dose = 37 , odds ratio = 4.48772635814889"
[1] "dose = 50 , odds ratio = 5.76703296703297"

Another common analysis is to fit a linear regression line between the log(odds of disease, given exposure) and the
dose, and to test whether the slope of the regression line is significantly different from zero. If the slope of the
regression line is significantly different from zero, it indicates that there is a significant linear relationship
between dose and the odds of having the disease, given exposure. We can fit the linear regression line and test whether
its slope is significantly different from zero using the following R function, doseOddsDiseaseRegression(), which you
will need to copy and paste into R to use:

> doseOddsDiseaseRegression <- function(mymatrix,referencerow=1)
{
 numstrata <- nrow(mymatrix)
 # calculate the stratum-specific odds ratios, and odds of disease:
 myodds <- vector()
 doses <- as.numeric(rownames(mymatrix))
 for (i in 1:numstrata)
 {
 dose <- doses[i]
 # calculate the odds of disease given exposure:
 DiseaseExposed <- mymatrix[i,1]
 ControlExposed <- mymatrix[i,2]
 totExposed <- DiseaseExposed + ControlExposed
 probDiseaseGivenExposed <- DiseaseExposed/totExposed
 probNotDiseaseGivenExposed <- ControlExposed/totExposed
 odds <- probDiseaseGivenExposed/probNotDiseaseGivenExposed
 logodds <- log(odds) # this is the natural log
 myodds[i] <- logodds
 }

 # test whether the regression line of log(odds) versus has a zero slope or not:
 lm1 <- lm(myodds ~ doses)
 summarylm1 <- summary(lm1)
 coeff1 <- summarylm1$coefficients
 # get the p-value for the F-test that the slope is not zero:
 pvalue <- coeff1[2,4]
 print(paste("pvalue for F-test of zero slope =",pvalue))

 # make a plot of log(odds) versus dose:
 plot(doses,myodds,xlab="Dose",ylab="log(odds)",main="Plot of log(odds) versus dose")
}

We can then use the function doseOddsDiseaseRegression() to test whether the slope of the linear regression
line for log(odds) versus dose is significantly different from zero, and also to make a plot of log(odds)
versus dose:

> doseOddsDiseaseRegression(mymatrix)
[1] "pvalue for F-test of zero slope = 0.00659217584881777"

The p-value for the test is less than 0.05, so there is evidence that the slope of the linear regression
line is significantly different from zero (using a p-value threshold of <0.05 for statistical
significance). That is, there seems to be a significant relationship between
dose and odds of having the disease given exposure.

[image: image4]

Calculating the Sample Size Required for a Randomised Control Trial

A common task in biomedical statistics is to calculate the sample size required, if you want to carry
out a randomised control trial with two groups (for example, where one group will take a drug that
you want to test, and the other group will take a placebo). You can calculate the sample size required
in each group using the following function, “calcSampleSizeForRCT()”, which you will need to copy
and paste into R to use:

> calcSampleSizeForRCT <- function(alpha,gamma,piT,piC,p=0)
{
 # p is the estimated of the likely fraction of losses to follow-up
 qalpha <- qnorm(p=1-(alpha/2))
 qgamma <- qnorm(p=gamma)
 pi0 <- (piT + piC)/2
 numerator <- 2 * ((qalpha + qgamma)^2) * pi0 * (1 - pi0)
 denominator <- (piT - piC)^2
 n <- numerator/denominator
 n <- ceiling(n) # round up to the nearest integer
 # adjust for likely losses to folow-up
 n <- n/(1-p)
 n <- ceiling(n) # round up to the nearest integer
 print(paste("Sample size for each trial group = ",n))
}

To use the “calcSampleSizeForRCT()” function, you need to specify the significance level that
you want to have, the power that you want to have, the estimated incidence of the disease in
the control group (the group taking a placebo), and the estimated incidence of the disease in
the treatment group (the group taking the drug). For example, if you want to have a 5%
significance level and 90% power, and the estimated incidences of the disease in the control
and study groups is 0.20 and 0.15, respectively, then to calculate the required sample size
for each group, you would type:

> calcSampleSizeForRCT(alpha=0.05, gamma=0.90, piT=0.15, piC=0.2)
[1] "Sample size for each trial group = 1214"

This tells us that the sample size required in each group is 1214 people, so overall we need
1214*2=2428 people in the randomised control trial.

If we estimate that there are likely to be a certain fraction of people who are lost to follow-up,
we can adjust our estimates of the number of people required for the trial. For example, if we
estimate that 10% of the people are likely to be lost to follow-up, we can calculate the number
of people required for the trial as:

> calcSampleSizeForRCT(alpha=0.05, gamma=0.90, piT=0.15, piC=0.2, p=0.1)
[1] "Sample size for each trial group = 1349"

This tells us that, if 10% of people are likely to be lost to follow-up, we need to have 1349 people
in each group in our trial, so 1349*2=2698 people overall.

Calculating the Power of a Randomised Control Trial

If, for practical reasons, you can only have a maximum of a certain number of people in each group
of your randomised control trial, then you can calculate the statistical power that your trial will have.
You can do this using the following function, “calcPowerForRC()”:

> calcPowerForRCT <- function(alpha,piT,piC,n)
{
 qalpha <- qnorm(p=1-(alpha/2))
 pi0 <- (piT + piC)/2
 denominator <- 2 * pi0 * (1 - pi0)
 fraction <- n/denominator
 qgamma <- (abs(piT - piC) * sqrt(fraction)) - qalpha
 gamma <- pnorm(qgamma)
 print(paste("Power for the randomised controlled trial = ",gamma))
}

For example, to calculate the power of a randomised control trial involving 500 children (250 in the
control group and 250 in the treatment group), where the significance level is 0.05, and the estimated
incidence of the disease in the control and treatment group is 0.3 and 0.2, respectively, we type:

> calcPowerForRCT(alpha=0.05, piT=0.2, piC=0.3, n=250)
[1] "Power for the randomised controlled trial = 0.73303725668939"

This tells us that the power for the randomised control trial will be 73%.

Making a Forest Plot for a Meta-analysis of Several Different Randomised Control Trials:

If you want to carry out a meta-analysis of several different randomised control trials, it is
useful to make a forest plot to display the data. For example, the results of several different
randomised control trials may be as follows:

Data for trial 1:

	
	Disease
	Control

	Exposure
	198
	728

	Unexposed
	128
	576

Data for trial 2:

	
	Disease
	Control

	Exposure
	96
	437

	Unexposed
	101
	342

Data for trial 3:

	
	Disease
	Control

	Exposure
	1105
	4243

	Unexposed
	1645
	6703

Data for trial 4:

	
	Disease
	Control

	Exposure
	741
	2905

	Unexposed
	594
	2418

Data for trial 5:

	
	Disease
	Control

	Exposure
	264
	1091

	Unexposed
	907
	3671

Data for trial 6:

	
	Disease
	Control

	Exposure
	105
	408

	Unexposed
	348
	1248

Data for trial 7:

	
	Disease
	Control

	Exposure
	138
	431

	Unexposed
	436
	1576

We can enter the data into R as follows:

> mymatrix1 <- matrix(c(198,728,128,576),nrow=2,byrow=TRUE)
> mymatrix2 <- matrix(c(96,437,101,342),nrow=2,byrow=TRUE)
> mymatrix3 <- matrix(c(1105,4243,1645,6703),nrow=2,byrow=TRUE)
> mymatrix4 <- matrix(c(741,2905,594,2418),nrow=2,byrow=TRUE)
> mymatrix5 <- matrix(c(264,1091,907,3671),nrow=2,byrow=TRUE)
> mymatrix6 <- matrix(c(105,408,348,1248),nrow=2,byrow=TRUE)
> mymatrix7 <- matrix(c(138,431,436,1576),nrow=2,byrow=TRUE)
> mylist <- list(mymatrix1,mymatrix2,mymatrix3,mymatrix4,mymatrix5,mymatrix6,mymatrix7)

We can then make a forest plot of the data using the following function, “makeForestPlotForRCTs()”,
which makes use of the R “rmeta” package (and requires that you have installed the “rmeta” package):

> makeForestPlotForRCTs <- function(mylist, referencerow=2)
{
 require("rmeta")
 numstrata <- length(mylist)
 # make an array "ntrt" of the number of people in the exposed group, in each stratum
 # make an array "nctrl" of the number of people in the unexposed group, in each stratum
 # make an array "ptrt" of the number of people in the exposed group that have the disease,
 # in each stratum
 # make an array "pctrl" of the number of people in the unexposed group that have the disease,
 # in each stratum
 ntrt <- vector()
 nctrl <- vector()
 ptrt <- vector()
 pctrl <- vector()
 if (referencerow == 1) { nonreferencerow <- 2 }
 else { nonreferencerow <- 1 }
 for (i in 1:numstrata)
 {
 mymatrix <- mylist[[i]]
 DiseaseUnexposed <- mymatrix[referencerow,1]
 ControlUnexposed <- mymatrix[referencerow,2]
 totUnexposed <- DiseaseUnexposed + ControlUnexposed
 nctrl[i] <- totUnexposed
 pctrl[i] <- DiseaseUnexposed
 DiseaseExposed <- mymatrix[nonreferencerow,1]
 ControlExposed <- mymatrix[nonreferencerow,2]
 totExposed <- DiseaseExposed + ControlExposed
 ntrt[i] <- totExposed
 ptrt[i] <- DiseaseExposed
 }
 names <- as.character(seq(1,numstrata))
 myMH <- meta.MH(ntrt, nctrl, ptrt, pctrl, conf.level=0.95, names=names)
 print(myMH)
 tabletext<-cbind(c("","Study",myMH$names,NA,"Summary"),
 c("Disease","(exposed)",ptrt,NA,NA),
 c("Disease","(unexposed)",pctrl, NA,NA),
 c("","OR",format(exp(myMH$logOR),digits=2),NA,format(exp(myMH$logMH),digits=2)))
 print(tabletext)
 m<- c(NA,NA,myMH$logOR,NA,myMH$logMH)
 l<- m-c(NA,NA,myMH$selogOR,NA,myMH$selogMH)*2
 u<- m+c(NA,NA,myMH$selogOR,NA,myMH$selogMH)*2
 forestplot(tabletext,m,l,u,zero=0,is.summary=c(TRUE,TRUE,rep(FALSE,8),TRUE),
 clip=c(log(0.1),log(2.5)), xlog=TRUE,
 col=meta.colors(box="royalblue",line="darkblue", summary="royalblue"))
}

We can then make a forest plot of the data from the seven different trials by typing:

> makeForestPlotForRCTs(mylist)

[image: image2]

We can use the “calcTaronesTest()” function to perform Tarone’s test (see above), to test
whether there is a significant difference between the seven trials in the odds ratio for
association between the disease and the exposure:

> calcTaronesTest(mylist)
[1] "Pvalue for Tarone's test = 0.190239054737704"

Here the p-value for Tarone’s test is greater than 0.05, indicating that there is no
evidence for a significant difference in the odds ratio between the different strata
(between the seven trials, in this example), when a p-value threshold of <0.05 is
used for statistical significance.

Links and Further Reading

Some links are included here for further reading.

For a more in-depth introduction to R, a good online tutorial is
available on the “Kickstarting R” website,
cran.r-project.org/doc/contrib/Lemon-kickstart [http://cran.r-project.org/doc/contrib/Lemon-kickstart/].

There is another nice (slightly more in-depth) tutorial to R
available on the “Introduction to R” website,
cran.r-project.org/doc/manuals/R-intro.html [http://cran.r-project.org/doc/manuals/R-intro.html].

Robin Beaumont has put some course material on using R for medical statistics on
his webpage [http://www.floppybunny.org/robin/web/virtualclassroom/stats/].

You can find a list of R packages for analysing clinical trial data on the
CRAN Clinical Trials Task View [http://cran.r-project.org/web/views/ClinicalTrials.html].

To learn about biomedical statistics, I would highly recommend the book “Medical
statistics” (product code M249/01) by the Open University, available from the Open University Shop [http://www.ouw.co.uk/store/].

Acknowledgements

Thank you to Noel O’Boyle for helping in using Sphinx, http://sphinx.pocoo.org, to create
this document, and github, https://github.com/, to store different versions of the document
as I was writing it, and readthedocs, http://readthedocs.org/, to build and distribute
this document.

Many of the examples in this booklet are inspired by examples in the excellent Open University book,
“Medical Statistics” (product code M249/01), available from the Open University Shop [http://www.ouw.co.uk/store/].

For very helpful comments and suggestions for improvements, I would like to say thank you very much to:
Tony Burton, Richard A. Friedman, Duleep Samuel, R.Heberto Ghezzo, David Levine, Lavinia Gordon, Friedrich Leisch,
and Phil Spector.

Contact

I will be grateful if you will send me (Avril Coghlan) corrections or suggestions for improvements to
my email address alc@sanger.ac.uk

License

The content in this book is licensed under a Creative Commons Attribution 3.0 License [http://creativecommons.org/licenses/by/3.0/].

 Copyright 2010, Avril Coghlan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Biomedical Statistics 0.2 documentation

Index

 Copyright 2010, Avril Coghlan.
 Created using Sphinx 1.3.5.

 _static/image3.png
Fle Edt View Misc Packages Windows Help

B

R version 2.11.0 (2010-04-22)
Copyright (C] 2010 The R Foundation for Statistical Computing
ISEN 3-500051-07-0

R is free software and comes with ABSOLUTELY NO VARRANTY.
You are velcome to redistribute it under certain conditions.
Type 'license(]' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type ‘contributors()' for wore information and
‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()' for an HTHL browser interface to help.
Type 'af)’ to quit R.

>

_static/comment-bright.png

_static/image4.png
log{odds)

0s

0o

08

Plot of log(odds) versus dose

10 20 Ell 40

Dose

50

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/file.png

_static/image2.png
Disease
Study (exposed)
198

96
1108
41
264
105
138

1
2
3
n
5
6
7

Disease
(unexposed) OR
128 122 —
101 078 ————
1645 1.06 -
504 104 ——
07 098 —-
348 092

436 116 _—

1.0 *

_images/image2.png
Disease
Study (exposed)
198

96
1108
41
264
105
138

1
2
3
n
5
6
7

Disease
(unexposed) OR
128 122 —
101 078 ————
1645 1.06 -
504 104 ——
07 098 —-
348 092

436 116 _—

1.0 *

_static/image1.png
Avril Coug

Internet
Moalla Frefox

B

@ et Program Access and Defaults
o T —

W0 Windows Catalog.

R windows Update.

Shortut o DABE e

@ 7

&) Accsssores

&) Actveper5.10.0Buid 1004
@ adobe

@ ooedt

@ e

@ cellhstrtor
@ clnalrrame

@ cronn

&) oel Controbaint

@ oslpriers

) Ok lbraries and ook

@ owstar

@ endote

&) Fesecure s For Workstions
@) Games

& chostgun

&) chostarpt

@ am

@ Hewerpacard

Taw

all Programs

) Intel(R) Management and Security
&) 2unge DiskDeskeop

&) Merosof ofice

@ vz

&) Mol Frefox

&) Mol Thundebid

@ Forcrestor

@ Py

@ reswin

&) Rodo Crestor DE
@) sssecare shel
@ st

@ Ty Edtor
@ w7z

@ vt

@ wisce

@ woreave
e

‘adobe Digal Edtions:

@
BE acobe Resder 9
+

Ihscape
& et Explorer
v

) oulookExpress
(@ Foneroio DX

L Remete Assstance
¢ Tresview

® windowsbeds layer

8 Windows Hessenger

G0 Windows Movi Haker

5 Windows Search

& cel ustrtor e 4.0
@ chatde

&) Redhotabock

@ TaskConch

@ Graphiz2.21

) Graphviz2.26

@ e

&) Systems Biclogy Warkberch
& orosbex

@ prtonze

R r280

) R260Hd

8 sl R 2.5.0

R rz100

) R2100kep

§8) sl R 2,100
1

R2.10.1 Help
§8) tninstalR 2.10.1

_images/image4.png
log{odds)

0s

0o

08

Plot of log(odds) versus dose

10 20 Ell 40

Dose

50

_images/image3.png
Fle Edt View Misc Packages Windows Help

B

R version 2.11.0 (2010-04-22)
Copyright (C] 2010 The R Foundation for Statistical Computing
ISEN 3-500051-07-0

R is free software and comes with ABSOLUTELY NO VARRANTY.
You are velcome to redistribute it under certain conditions.
Type 'license(]' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type ‘contributors()' for wore information and
‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()' for an HTHL browser interface to help.
Type 'af)’ to quit R.

>

_static/plus.png

_static/down.png

_static/up.png

search.html

 Navigation

 		
 index

 		Biomedical Statistics 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010, Avril Coghlan.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

